Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Drones have become invaluable tools for studying animal behaviour in the wild, enabling researchers to collect aerial video data of group‐living animals. However, manually piloting drones to track animal groups consistently is challenging due to complex factors such as terrain, vegetation, group spread and movement patterns. The variability in manual piloting can result in unusable data for downstream behavioural analysis, making it difficult to collect standardized datasets for studying collective animal behaviour.To address these challenges, we present WildWing, a complete hardware and software open‐source unmanned aerial system (UAS) for autonomously collecting behavioural video data of group‐living animals. The system's main goal is to automate and standardize the collection of high‐quality aerial footage suitable for computer vision‐based behaviour analysis. We provide a novel navigation policy to autonomously track animal groups while maintaining optimal camera angles and distances for behavioural analysis, reducing the inconsistencies inherent in manual piloting.The complete WildWing system costs only $650 and incorporates drone hardware with custom software that integrates ecological knowledge into autonomous navigation decisions. The system produces 4 K resolution video at 30 fps while automatically maintaining appropriate distances and angles for behaviour analysis. We validate the system through field deployments tracking groups of Grevy's zebras, giraffes and Przewalski's horses at The Wilds conservation centre, demonstrating its ability to collect usable behavioural data consistently.By automating the data collection process, WildWing helps ensure consistent, high‐quality video data suitable for computer vision analysis of animal behaviour. This standardization is crucial for developing robust automated behaviour recognition systems to help researchers study and monitor wildlife populations at scale. The open‐source nature of WildWing makes autonomous behavioural data collection more accessible to researchers, enabling wider application of drone‐based behavioural monitoring in conservation and ecological research.more » « lessFree, publicly-accessible full text available March 10, 2026
- 
            Free, publicly-accessible full text available December 4, 2025
- 
            Plant counting is a critical aspect of crop management, providing farmers with valuable insights into seed germination success and within-field variation in crop population density, both of which are key indicators of crop yield and quality. Recent advancements in Unmanned Aerial System (UAS) technology, coupled with deep learning techniques, have facilitated the development of automated plant counting methods. Various computer vision models based on UAS images are available for detecting and classifying crop plants. However, their accuracy relies largely on the availability of substantial manually labeled training datasets. The objective of this study was to develop a robust corn counting model by developing and integrating an automatic image annotation framework. This study used high-spatial-resolution images collected with a DJI Mavic Pro 2 at the V2–V4 growth stage of corn plants from a field in Wooster, Ohio. The automated image annotation process involved extracting corn rows and applying image enhancement techniques to automatically annotate images as either corn or non-corn, resulting in 80% accuracy in identifying corn plants. The accuracy of corn stand identification was further improved by training four deep learning (DL) models, including InceptionV3, VGG16, VGG19, and Vision Transformer (ViT), with annotated images across various datasets. Notably, VGG16 outperformed the other three models, achieving an F1 score of 0.955. When the corn counts were compared to ground truth data across five test regions, VGG achieved an R2 of 0.94 and an RMSE of 9.95. The integration of an automated image annotation process into the training of the DL models provided notable benefits in terms of model scaling and consistency. The developed framework can efficiently manage large-scale data generation, streamlining the process for the rapid development and deployment of corn counting DL models.more » « less
- 
            IntroductionAdvancements in machine learning (ML) algorithms that make predictions from data without being explicitly programmed and the increased computational speeds of graphics processing units (GPUs) over the last decade have led to remarkable progress in the capabilities of ML. In many fields, including agriculture, this progress has outpaced the availability of sufficiently diverse and high-quality datasets, which now serve as a limiting factor. While many agricultural use cases appear feasible with current compute resources and ML algorithms, the lack of reusable hardware and software components, referred to as cyberinfrastructure (CI), for collecting, transmitting, cleaning, labeling, and training datasets is a major hindrance toward developing solutions to address agricultural use cases. This study focuses on addressing these challenges by exploring the collection, processing, and training of ML models using a multimodal dataset and providing a vision for agriculture-focused CI to accelerate innovation in the field. MethodsData were collected during the 2023 growing season from three agricultural research locations across Ohio. The dataset includes 1 terabyte (TB) of multimodal data, comprising Unmanned Aerial System (UAS) imagery (RGB and multispectral), as well as soil and weather sensor data. The two primary crops studied were corn and soybean, which are the state's most widely cultivated crops. The data collected and processed from this study were used to train ML models to make predictions of crop growth stage, soil moisture, and final yield. ResultsThe exercise of processing this dataset resulted in four CI components that can be used to provide higher accuracy predictions in the agricultural domain. These components included (1) a UAS imagery pipeline that reduced processing time and improved image quality over standard methods, (2) a tabular data pipeline that aggregated data from multiple sources and temporal resolutions and aligned it with a common temporal resolution, (3) an approach to adapting the model architecture for a vision transformer (ViT) that incorporates agricultural domain expertise, and (4) a data visualization prototype that was used to identify outliers and improve trust in the data. DiscussionFurther work will be aimed at maturing the CI components and implementing them on high performance computing (HPC). There are open questions as to how CI components like these can best be leveraged to serve the needs of the agricultural community to accelerate the development of ML applications in agriculture.more » « lessFree, publicly-accessible full text available January 23, 2026
- 
            Abstract Drones are increasingly popular for collecting behaviour data of group‐living animals, offering inexpensive and minimally disruptive observation methods. Imagery collected by drones can be rapidly analysed using computer vision techniques to extract information, including behaviour classification, habitat analysis and identification of individual animals. While computer vision techniques can rapidly analyse drone‐collected data, the success of these analyses often depends on careful mission planning that considers downstream computational requirements—a critical factor frequently overlooked in current studies.We present a comprehensive summary of research in the growing AI‐driven animal ecology (ADAE) field, which integrates data collection with automated computational analysis focused on aerial imagery for collective animal behaviour studies. We systematically analyse current methodologies, technical challenges and emerging solutions in this field, from drone mission planning to behavioural inference. We illustrate computer vision pipelines that infer behaviour from drone imagery and present the computer vision tasks used for each step. We map specific computational tasks to their ecological applications, providing a framework for future research design.Our analysis reveals AI‐driven animal ecology studies for collective animal behaviour using drone imagery focus on detection and classification computer vision tasks. While convolutional neural networks (CNNs) remain dominant for detection and classification tasks, newer architectures like transformer‐based models and specialized video analysis networks (e.g. X3D, I3D, SlowFast) designed for temporal pattern recognition are gaining traction for pose estimation and behaviour inference. However, reported model accuracy varies widely by computer vision task, species, habitats and evaluation metrics, complicating meaningful comparisons between studies.Based on current trends, we conclude semi‐autonomous drone missions will be increasingly used to study collective animal behaviour. While manual drone operation remains prevalent, autonomous drone manoeuvrers, powered by edge AI, can scale and standardise collective animal behavioural studies while reducing the risk of disturbance and improving data quality. We propose guidelines for AI‐driven animal ecology drone studies adaptable to various computer vision tasks, species and habitats. This approach aims to collect high‐quality behaviour data while minimising disruption to the ecosystem.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available